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Abstract: Three computational approaches have been used to obtain backscattering
amplitudes for sound waves incident on elastic objects and shells in water: the T-matrix
method, the Finite element/Boundary element method, and the Superposition method. These
methods have been found appropriate for analyzing the resonance effects apparent in the
scattering from spheroidal solids, as well as from cylindrical shells with flat endcaps. The
resonances have been interpreted by the phase matching of circumferential waves, and a
simple method for obtaining the resonance frequencies based on the phase matching principle

[H. Uberall, L. R. Dragonette and L. Flax. J. Acoust. Soc. Am. 61, 711 (1977)1 has proved
suitable for predicting the calculated resonances of spheroids.

1. INTRODUCTION

This paper describes the procedures used, and results obtained, computational as
well as experimental, in our studies of the acoustic scattering from a variety of submerged
elastic objects: solid elastic spheres, finite spheroids, as well as air-filled cvlindrical shells of
finite length. In this investigation, we shall primarily concentrate on the resonances that
appear in the backscattering amplitude when plotted vs. frequency, for various purposes.
First, the resonances carry with them a wealth of information about the consistency and the
shape of the scattering object, which can for example be used for target classification

purposes I1]. Here, it will be shown that the resonance spacing for scattering from solid ion For
spheroids can be used to determine the shear speeds of the medium the spheroids are made CRAM
of. TAB

Second. the resonances are known to be caused by circumferentially propagating 'ounced
surface waves (which are generated by the incident acoustic wave) that close into themselves calion
and. when they match phases, experience a resonant build-up by constructive interference

121. This picture provides physical insight into the scattering process. and allows us to
determine the properties of the surface waves that can exist on submerged solids. Con- tution l
versely. if the surface wave speeds are known, a prediction of the resonance frequencies is
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possible depending on the shape of the object, and using a closed geodesic propagation path
for the surface waves appropriate to the direction of incidence of the acoustic wave [3]. As
an application of this method, resonance frequencies and surface wave dispersion curves
were determined for solid spheroids and for cylindrical shells with hemispherical encaps.

While the above-described resonance calculations for spheroids were carried out
using the NOARL T-matrix code [4], another numerical approach is utilized in our analysis
of scattering experiments from finite-cylindrical shells with flat endcaps, namely the finite
element/boundary element method, and also the superposition method as developed and/or
extended by one of us (R.D.M.) [5]. Results of this method are compared with the experi-
ments, and are physically interpreted via the dispersion curves of Lamb-type waves propa-
gating on the shell, leading to the identification of the resonances by their generation of shell
waves. Finally, calculated resonances of spheroids at axial incidence (the configuration used
for the previously-mentioned examples) are shown to be to some extent observable also for
broadside incidence, which casts light on the generation mechanism of the surface waves
causing the resonances.

2. ACOUSTIC RESONANCES OF SOLID SPHEROIDS
(MOSTLY AXIAL INCIDENCE)

The NOARL T-matnx code, as described earlier [41, was used to obtain the far-field
backscattering amplitude ("form function") for plane waves axially incident on solid
spheroids of various materials immersed in water: brass (Br), nickel (Ni), aluminum (Al),
steel (St), molybdenum (Mo), and tungsten carbide (WC). Their material properties are listt c
in table 1; sound speed in water is taken as c, = 1.4825 m/s. Figure 1 shows the modulus of
the form function of a prolate brass spheroid with aspect ratio 3:1 plotted vs. the reduced
frequency kIL/2 (k = sound wave number in water, L = length of spheroid), shown as a
dashed line. It is well known, and this indeed forms the basis of the Resonance Scattering
Theory (RST) [61, that the scattering amplitude is the superposition of a geometrical-
reflection amplitude, and of a resonant sum of surface-wave amplitudes. For solid objects,
the geometrical amplitude is closely enough represented by that of a rigid object of the same
shape, and by coherently subtracting the latter, we obtain the pure resonance amplitude as a
solid line in Fig. 1. The resonances are caused here by the phase matching of Rayleigh-type
surface waves propagating along a meridian, labeled as Brn, where n is the number of
standing wavelengths around the path.

In Fig. 2. we show the resonance response for 3:1 spheroids of the six materials
listed in table 1, and in Fig. 3 the resonance response for 6:1 spheroids. This allows us to
observe the shifts in the resonance frequencies as to their dependence on the scatterer's
material (and on the aspect ratio). Table 2 lists the resonance frequency ratios (normalized to
brass) for the various materials, resonance orders n, and the two aspect ratios. Also listed
are the ratios of the shear speed relative to that of brass. One notices a close agreement of
these ratios (while the ratios of the p-wave velocities are found completely unrelated to the
resonance ratios). It is seen, therefore, that the observed resonance positions may serve to
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determine the material of the scattering object via its shear speeds -- an example of "inverse
scattering" where the scattering object is identified by analyzing the acoustic echoes. And,

since the resonances are generated by the phase matching of surface waves on the scattering

object. this example also shows that the phase speeds of the surface waves are closely related
to the bulk shear speeds in the material of the objects over which the surface waves
propagate.

Table 1. Density p, p-wave speed cp and shear wave speed cs of spheroid materials.

p(g/cm 3) cp(m/s) cs(m/s)
Br 8.9 4,400 1,900

Ni 8.7 6,000 3,000

Al 2.7 6,350 3,050
St 7.7 5,950 3,240

Mo 10.1 6,350 3,650
WC 13.1 6,950 3,940

Table 2. Resonance frequency ratios from Figs. 2 and 3, and
shear speed ratios relative to brass

n 2 3 4 2 3 4 c/cs (Brass)

Ni 1.50 1.52 1.55 1.51 1.53 1.53 1.58

Al 1.53 1.53 1.55 1.54 1.54 1.63 1.60
St 1.59 1.63 1.67 1.63 1.62 -- 1.70

Mo 1.78 1.82 -- 1.79 1.81 -- 1.92
WC 1.94 1.98 -- 1.96 1.95 -- 2.07

We finally show in a "level diagram" for WC spheroids for various aspect ratios
(Figure 4) how the Rayleigh wave resonances shift (gradually) upwards with increasing

aspect ratio [31 In addition, higher-order resonances (the so-called Whispering Gallery
resonances) which manifest themselves by very narrow spikes. are shown also. labeled b' a
second index k = 2,3 ... (besides the first index n). They are seen to shift much more rapidly
upward with aspect ratio, thereby crossing over the Rayleigh resonances (a phenomenon
called "level crossing").

Figure 5 gives an example of both axial (a) and broadside incidence ('• on a 4:1
nickel spheroid. The form function (a) shows the n = 2 Rayleigh peak at ,A./2 = 7.0, caused

by the phase matching of a meridionally propagating Rayleigh wave. The same peak also

appears at broadside incidence (b., indicating that even in this case, ,eridional waves are

generated (while generally the surface waves generated here prop.igate equatorially around

the object). This generating mechanism is illustrated in Figure 6 on the example of a
hemispsherically-endcapped cylinder as discussed recently 171.
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Resonance frequencies can be predicted by the phase matching condition

J k, ds = 2(n + 1/2)n, (I)

where n is the number of wavelengths the ith surface wave type spans over the closed path

(the extra 1/2 being caused by phase jumps when the surface waves pass the two caustics).
Knowing the (dispersive) wave number ki allows a determination of the resonance

frequencies from Eq. (1); if ki is unknown, a simple "tangent sphere" model has been

developed [8,91 where the known wave number on a sphere is used locally, the sphere being

tangent to the object's surface along the propagation direction.

For the case of solid spheroids, this approach has been used in order to predict the

resonance frequencies shown in Fig. 4, as discussed earlier [31; it is also applicable to the

results of Fig. 5.

3. ACOUSTIC RESONANCES ON HOLLOW CYLINDERS WITH

FLAT ENDCAPS (AXIAL INCIDENCE)

This problem was analyzed using the Finite Element/Boundary Element Method, or

the Superposition method, as described by us earlier [5]. We consider the end-on scattering

from a cylindrical aluminum shell with flat circular-plate endcaps. Dimensions are L = 30

mm, a = 9 mm, shell thickness = 1 mam. An axisymmetric model of the shell was developed

using the NASTRAN/SIERRAS code. The NASTRAN structural finite element model of

the cylinder, after Guyan reduction, contained 160 grid points. The azimuthal increment of

the axisymmetric model was two degrees.

The calculated backscattered form function for the end-on incidence of the cylindrical

shell with flat endcaps is presented in Figure 7. The measured structural response spectra

are also given in Figure 7. The experimental data were obtained at the University of Le

Havre. The frequency and number of resonances observed by NASTRAN/SIERRAS and

experiment are in reasonable agreement..The interpretation of the resonances is provided

using the NASTRAN/SIERRAS results as follows:

In order to identify the resonances, the structural velocity and phase on the surface

was examined for each peak and dip in the form function. Each peak in the form function

indicates a frequency where the structure is strongly excited. This has been interpreted by

the phase matching condition [2.101 (PMC) which associates the resonance condition with

the waves - hich traverse the structure and return to the path origin in phase. Identification

of the resonance is aided by an understanding of form function interpretation. As explained

in earlier papers I II . the width of the resonance provides an indication of the damping

present in the mode being excited. Consider the first peak in the form function of Figure 7.

The narrow width indicates that there is little damping in this first resonance. Since

structural damping was ignored in this analysis, the only damping present is due to the fluid.

The real part of the structural velocity for this case is depicted in Figure 8. The mode is

easily recognized as the end fire (or 'oil-canning") mode corresponding to the first mode of
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the circular plate. Note that the response of the two endcaps is very similar for this mode.

At this low frequency, the response of the fluid is largely reactive and it essentially sloshes
from one end of the cylinder to the other and back over each cycle. Therefore, the fluid
response is largely incompressible at this frequency and nodal cancellation over the entire
body is large. Consequently, the reactive resistance is large, and the radiation efficiency,

radiation damping and width of resonance are all small.

The time progression response plot over a complete cycle for the third peak (ka =

2.26) is shown in Figure 9. The curves shown in the figure were generated by computing
the velocity response at ten different times and superimposing them onto a single plot. The

endcap is responding with the m = 1 nodal line mode and the cylinder with the n = 3 half-
waves longitudinal bending wave along the cylinder. The relatively large response for this

mode is due to several factors. First, it is the frequency which excites the first single nodal
line mode of the endcap. Second, the n = 3 mode of the cylinder is odd, leading to imperfect
nodal cancellation over the cylindrical portion. Finally the two endcaps are in phase so that
the contributions from the ends are additive.

The behavior of the shell at the peaks in the form function varies depending on the
frequency. The coincidence frequency of the plating occurs at 228.3 kHz. At this

frequency, the bending wavelength in an infinite plate is approximately the same as that in
the fluid. Below this frequency the modes are easily identified (as in Figure 9). At and
above coincidence, the behavior of the shell is not as well defined. Consider the time
progression curve at ka = 19.8 shown in Figure 10. It is clear that no standing wave is
observable here. The large radiation damping and wave interaction due to transmission and

reflections at the discontinuities add complexity at these frequencies. It is difficult to assign a
particular mode to the respunse due to the phasing of the velocity over the surface. However,

an attempt was made to determine the primary wave traveling on the shell. The number of
wavelengths was determined by counting the number of lobes along the cylinder as a

function of time. The dominant number of half-waves along the cylinder for all times was
used to compute the phase velocity.

The dispersion curve for aluminum was used to identify the wave types on the
cylindrical shell. A comparison between the NASTRAN/SIERRA phase velocities for the
finite shell with flat plate endcaps and the infinite plate dispersion curves is given in Figure
11. From the figure it is determined that the waves on the cylinder are positively identified
as the Lamb "A" wave (pseudo-Stoneley. or fluid-borne wave 1 11) Note that the dispersion
curve rises again as the frequency approaches zero. This effect has been found previously

for the spherical shell [ 111 and is primarily due to membrane effects (stretching) which
dominate at the lower shell resonances. The fact that the phase velocity as determined by the
method described in the preceding paragraph fits the dispersion curve so well tends to verify

the identification method used.

The time progression plots are found to be useful and provide insight into the

physical interpretation of the structural response. At low frequencies (well below

coincidence), the incident wave envelops the structure and the behavior at the near and far



290

endcaps is similar in response (Figures 8 and 9). Near coincidence, the characteristic
features are different. In Figure 10 it is observed that the near endcap is most strongly
excited. Also, the longitudinal bending waves along the cylindrical shall begin with small
amplitude and build up along the length of the cylinder. This is due to the fact that pressure
is a scalar and excites the cylinder even though the velocity is parallel to it. Observe that the
reflection at the far end of the cylinder results in an increase in amplitude near the far end.

Further, there is an increase in response near the caustic point at the center of the far endcap.
However, as the frequency has increased well above coincidence, shadowing on the far
endcap is observable. The apparent modes of the near and far endcaps become different,
which may be attributed to the difference in the types of loadings for the two ends at high

frequency. The loading of the near endcap is primarily due to the incident wave, and
therefore has relatively small in-plane excitation. The far endcap, on the other hand, has a
large in-plane excitation due to the traveling axisymmetric wave on the cylinder stretching the
far endcap. The shadowed side of the cylinder is excited primarily through the "comer"
(actually an edge) which results in a "creeping wave" along the far endcap. Also. a large
caustic point response is noted.

The large peak at ka = 21.1 in the structural response spectrum of Figure 7 is due to
the n = 6 Lamb symmetric So mode of the cylinder. This corresponds to a dip in the form
function. This mode was clearly identified by observing the phase plots of the in-plane
structural velocities and phase. This mode was the only dip which has a well defined phase
change plot associated with it. Also, the peak in the structural response spectra is
characteristic of So responses [ 12].

4. CONCLUSIONS

The end-on (and also broadside) acoustic resonance scattering from submerged
finite-length cylindrical shells and spheroids has been analyzed by a T-matrix code, by the
phase matching method, and by a finite element/boundary element calculation. Identification
of the surface wave types, and physical interpretation of the results has been performed.
Comparison with experimental results indicates that the resonances are of the correct spacing
with respect to frequency. An example for the solution of an inverse problem has been

presented, and the generation of meridionally propagating surface waves at broadside
incidence has been demonstrated.
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